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Born-Green-Yvon approach to the local densities of a simple fluid in a slitlike pore
filled with a quenched disordered matrix
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The local density of a hard-sphere fluid adsorbed in a slitike pore filled with a quenched disordered
hard-sphere matrix is studied from the Born-Green-Yvon equation with the Fisher-Methfessel approximation.
The solution of the replica Ornstein-Zernike equation in the Percus-Yevick approximation for a fluid in a
homogeneous matrix is used as an input. The density profiles are compared with simulation data. It is shown
that the theory works well for low and intermediate matrix densities. The approach seems promising for a
description of capillary condensation and other phenomena in matrix-filled J&E363-651X98)01408-1

PACS numbgs): 61.25-f, 61.20—p, 61.43.Dq, 68.45.Da

Recently, much attention has been paid to describing theems is conceptually difficult. On the other hand, an applica-
structure and thermodynamics of guenched-anne&@®)  tion of the BGY-FM theory that relies on the modeling of
fluid mixtures. In particular, cluster expansions for the dis-contact values of the nonuniform pair distribution function
tribution functions and thermodynamic properties and replicsseems possible. Our main objective in this work is to gener-
Ornstein-Zernike integral equations have been developedlize the BGY-FM approach for IQA systems as a possible
[1-4]. Several simple model QA systems have been investialternative for the application of the IROZ equations.
gated; see, e.g., Ref®—12]. The theory of inhomogeneous  Similar to Refs.[14,15, we consider an IQA fluid in a
QA (IAQ) mixtures is in its initial state, since the properties slitlike pore of widthH. The pore walls are chosen normal to
of nonuniform systems are more complex and require morg¢ghe z axis, and the pore is centeredzt 0. The speciesn
sophisticated tools. The problem of IQA fluids was first (the matrix componehtadsorbed in the pore, is assumed to
stated formally in Ref[13]. The inhomogeneous replica be in equilibrium with its bulk counterpart at the chemical
Ornstein-Zernike equation($ROZ), complemented by either potentialw,,. The structure of the matrix is characterized by
the Born-Green-Yvon(BGY), or the Lovett-Mou-Buff- the density profilep,,(z) and by inhomogeneous pair corre-
Wertheim (LMBW) equation for the density profiles, were lation functionh,,(1,2). Due to external factors the struc-
proposed to study the adsorption of a fluid near a planéure of the matrix becomes quenched, and a confined porous
boundary of a semi-infinite disordered but uniform matrix. medium (a matrix-filled slitlike pore is formed. Now we
However, the first results from numerical solution of IROZ consider adsorption of another fluidn that pore. The ther-
equations and computer simulation data for an IQA fluidmodynamic state of the fluilin the bulk is determined by
were presented in our very recent wofiel,15. We found  the chemical potentigk; . After equilibration in the pore, in
that the solutions of the IROZ equations agree sufficientlythe presence of matrix species, the flligkhibits the density
well with computer simulation data for hard-sphere adsorbedlistributionp(z). Its pair correlation function is denoted by
fluids; unfortunately, they require intensive numerical work.h¢(1,2).

Therefore, the study of the phase behavior of IQA systems For explorative purposes, we assume a simple form for
using the IROZ methodology seems problematic. A searclhe interactions between particles and pore walls, choosing
for alternatives is of crucial importance for the thermody-both species as hard spheres of the same diarmeter1,
namics of confined QA systems.

The BGY approach and density functional theory have
been shown to be successful for inhomogeneous simple flu- Uij(r):[
ids [16]. There exists a close relationship between the BGY
equation with a coarse-grained prescription, developed by
Fischer and Methfessdleferred to below as the FM ap-
proximation [17], and the density functional methdd8]. Ui(z)=[
The BGY-FM approach was extended for fluid mixtures as
well [19]. Both, the single-component and multicomponent
versions of the BGY-FM theory agree reasonably well withwherei,j=m,f are the species indices.
simulations. Moreover, in the case of single-component non- The matrix structure can be obtained by solving the inho-
uniform fluids, the FM approach leads to a description ofmogeneous Ornstein-Zernike equation supplemented by the
wetting transitions, and is simpler to use than sophisticatetMBW equation for the density profile and the second order
density functional methods. At present, an extension of denPercus-Yevick approximatiofil4] with the exact boundary
sity functional methods to the case of QA nonuniform sys-conditiony,,(z— * ©) =expBAwm, whereA u,, is the con-
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figurational part of the chemical potential for the matrix spe-p; are calculated according to E() [17]. However, when
cies, andy(2) = exd BUn(2)]pm(2) is the one-particle cavity both species are of different sizes, the definitions of averaged
distribution function. densities developed in Rdf19] might be useful.

The BGY-FM approach for a one-component fluid may From the numerical point of view, the solution of E§)
serve as an alternative for evaluating matrix local density. lis advantageous, if compared with the solution of the IROZ

leads to the following equation fqr,(z) [17], equations. The idea behind this is simply to avoid the solu-
tion of the IROZ equations, that is, to obtain necessary input
d1In pr(zy) N pU(z,) into the BGY equation in the exact formulation of the prob-
dzy dzy lem (i.e., in the IROZBGY equation not from the IROZ

equation but from the solution of the usual ROZ equations, at

-~ some averaged density. The aim of our calculations was to
:f dr2212pm(22)gomn[o-1pm(zl122)] r_12 (1= o), 9 y

@ 2| a
which is nothing else but the BGY equation in which the 15 |
contact value of the nonuniform pair distribution function,
9% (Iri—ral=0)=h2 (Jri—r,]=0)+1 is approximated
by the contact value for a uniform fluid at average density
pm(r1,r2). This density is evaluated as follows:

p¢(2)

- 1
Pm(zc):; f p(r+re)dr. 3

In the above, the averaging is done over a sphere of diameter
o and volumev, centered at a point,=[r,;+r,]/2. The
boundary condition for solving the BGY equation is the
same as for the LMBW equation.

The fluid structure in Refs[14,15 has been obtained 100 |
from the IROZ+BGY equations. The solution of the IROZ
equations is the most time-consuming part of the numerical
procedure. However, if one focuses on the evaluation of the
local density of the adsorbed fluid rather than the inhomoge-
neous pair correlation functions, the application of a multi- 1t
component version of the BGY-FM theof$9] may be at-
tempted. Actually, the local density distribution of fluid
particles in confined quenched-annealed systems represents 0.1 - ' 1 ' o
the most important property. One then obtains the adsorption z
isotherms by straightforward integration.

To obtain the local fluid density in the IQA of this work,
we propose an approximation similar to the BGY-FM equa-
tion for a two-component fluid of matrix and fluid particles,

dIn ps(zy) N dpU(zy)
iz, iz,

1000

vt (2)

10

= J drzzlzpm(zz)ggqf[ff;;m(zl 22),p1(21,22)]

1
Xr_lz o(r 1o~ U)"’f dr2z1opm(22)
_ _ 1 FIG. 1. The density profilefparts(a) and (c)] and the cavity
X Ol 03 Pm(21,22),91(21,25)] P &(rip—o). (4  distribution function[part (b)] of the fluid in matrix-filled slitlike
12 pore,H=4. The symbols denote the results of computer simula-
. 0 ~ ~ tions[15], the solid lines are the results of the FM-type theory, and
Sémlk‘ii o Eq. (2, dmdoipm(21,22),p1(21,22)] and o Byl ines have been evaluated from the IROZ theory. The
gff[o'pm(zl'22)'pf(zl’22)] are the contact .v-alues, evalu- chemical potential of matrix iBA u,=0.935[parts (a) and (b)]
ated for theuniform QA system at the densitigsn(z1,22)  andga u,,=3.1136[part(c)]. The chemical potential of the fluid is
andpy(z;,2). In the solution of Eq(4) we have applied the  ga 4, =3.1136[the lower curves in par@) and in the left panel of
exact boundary conditioly;(z— =) =exp(BAuy), where  part(c)], 4.8147[the upper curves in paf8) and in the left panel of
y+(2) is the cavity distribution function. In the case of equal part(c)], and 5.8346part(b)]. The right panel in partc) shows the
size matrix and fluid particles, the averaged densfijggnd  matrix density profile(at SA = 0.935=3.1136).
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FIG. 2. The density profiles for a fluid adsorbed in a matrix- n

filled pore H=4 with BAu,,=0.5429. The chemical potential of
fluid species is8A u;=0.5747, 0.5429, 1.7316, 3.1136, and 4.8147 06
(the solid lines from bottom to top

0.4}

[~
test the FM-type theory in the simplest case of equal size
matrix and fluid particles confined in a slitlike, hard-wall 0.2
pore. We have compared the resulting density profiles with
the results of the IROZ theoifyL 4] and with grand canonical
ensemble Monte Carlo simulatioh$5]. 0 ; . - ; . s
The solution of Eqs(2) and(4) requires a knowledge of 0 05 1 1-5p/kT2 25 3 35

the contact values of the homogeneous pair distribution func-
tionsg¥,(r) andg?(r) in a wide interval of densities. These  FIG. 3. The amount of adsorbed fluid on the bulk pressure for
have been evaluated from bulk ROZ equations with the PYmatrices with different microporositjpart (a)] and for different
approximation. The inaccuracies in calculating contact valpore width[part (b)]. In part (8) the matrix chemical potential is
ues[7] may influence the final results, but we would like to A u,=0.5747, 0.5429 and 1.731@he curves from top to bot-
test the simplestand fastestpossible method. tom), H=4. In part (b) the matrix chemical potential is fixed
In Fig. 1, we show the results for a narrow pore=4. In~ BApy=0.5429, andH=3, 4, 7, and 11(the curves from top to
parts(a) and(b) we choose8A u,,=0.935, that corresponds Pottom.
to the bulk matrix densityp?=0.334 25, if the Carnahan-
Starling equation of state is used. In _péu_:)t of _th|s figure, —Afp(2)dzP, where the porosityP is defined asP
the chemical potential of the matrix is higheBA un,
_ 0_ =AfdZ41-pn(2)], and A denotes the surface area of a
=3.1136 (,,=0.5). The values forBAu; range from . ; )
3.1136 to 5.8346i.e., the bulk fluid density? ranges from single pore wall. Thde fdepenhdenmes E;]fon the I.bUIk ﬂu'd.
0.5 to 0.65. From Figs. 1a) and Xb), we conclude that for a pressurep (computed from the Carnahan-Starling equation

low density matrix both FM and IROZ theories give similar of statg are given in Fig. 3. The amount of adsorbed fluid is

, : ; ; . higher i ix with | i llasi
profiles. Obviously, when the chemical potential of the fluid Igher in a matrix with lower porosity, as well as in narrower

! D . pores. The adsorbed amount increases in both cases with
increases, the deviations of the FM profiles from IROZ pro'increasing bulk pressure.

files and from the simulational data become more pro- To summarize, we have proposed an extension of the
nou_nced. The FM theory seems to be more accurate in t GY-FM approach for simple inhomogeneous fluids to in-
region close to the pore walls. However, in th_e inner part Ohomogeneous quenched-annealed simple fluids. We have
the pore the I_:M-type theory smooths the oscillatory Chara(.:'hown that this very simple theory works sufficiently well
ter Of. the profile and leads to a somevyhat lower average ﬂu'éor low and intermediate matrix densities for slitlike pores.
density at the pore center. Wh@a u,, increases, the devia-

. . Our results for the density profiles agree with computer
tions of the FM theory _from t_he second-or(_jer the(nugln_ch simulation data and with much more sophisticated IROZ
agrees well with the simulational dafa5]) increase[Fig.

equations complemented by the BGY or LMBW equation.
Khe adsorption isotherms calculated in this study have been

Ejoert:lsjiltl; fillsji?lc?tetr:)Soitiﬁisg ﬁf _?L?:rig'Zétpgﬂ\;;;jr?gntgaééizggtrfigrshown to behave qualitatively correctly on the confined ma-
simple nonuniform fluids Sokolowski and FiscH9] ob- trices’ porosity, and on the bulk pressure. Most importantly,

served that the theory fails at very high fluid densities. we expect that the approach developed would permit one to

In Fig. 2, we show the evolution of the fluid density pro- isatgdy the phase behavior of confined quenched-annealed flu-

files from the BGY-FM approach in a slitlike pore of width

H=4, with the fluid chemical potential atBAu,= This project was supported in parts by DGAPA of the
—0.5747, @%zO.Z). We observe the development of com- UNAM, Grant No. IN111597, and by the National Council
mon adsorbed fluid layering in the narrow pore. These profor Science and TechnologfCONACyT), Grant No.
files permit us to obtain the amount of adsorbed fldid, 25301E.
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