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Born-Green-Yvon approach to the local densities of a simple fluid in a slitlike pore
filled with a quenched disordered matrix
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~Received 12 February 1998!

The local density of a hard-sphere fluid adsorbed in a slitlike pore filled with a quenched disordered
hard-sphere matrix is studied from the Born-Green-Yvon equation with the Fisher-Methfessel approximation.
The solution of the replica Ornstein-Zernike equation in the Percus-Yevick approximation for a fluid in a
homogeneous matrix is used as an input. The density profiles are compared with simulation data. It is shown
that the theory works well for low and intermediate matrix densities. The approach seems promising for a
description of capillary condensation and other phenomena in matrix-filled pores.@S1063-651X~98!01408-1#

PACS number~s!: 61.25.2f, 61.20.2p, 61.43.Dq, 68.45.Da
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Recently, much attention has been paid to describing
structure and thermodynamics of quenched-annealed~QA!
fluid mixtures. In particular, cluster expansions for the d
tribution functions and thermodynamic properties and rep
Ornstein-Zernike integral equations have been develo
@1–4#. Several simple model QA systems have been inve
gated; see, e.g., Refs.@5–12#. The theory of inhomogeneou
QA ~IAQ! mixtures is in its initial state, since the properti
of nonuniform systems are more complex and require m
sophisticated tools. The problem of IQA fluids was fir
stated formally in Ref.@13#. The inhomogeneous replic
Ornstein-Zernike equations~IROZ!, complemented by eithe
the Born-Green-Yvon~BGY!, or the Lovett-Mou-Buff-
Wertheim ~LMBW ! equation for the density profiles, wer
proposed to study the adsorption of a fluid near a pl
boundary of a semi-infinite disordered but uniform matr
However, the first results from numerical solution of IRO
equations and computer simulation data for an IQA flu
were presented in our very recent works@14,15#. We found
that the solutions of the IROZ equations agree sufficien
well with computer simulation data for hard-sphere adsor
fluids; unfortunately, they require intensive numerical wo
Therefore, the study of the phase behavior of IQA syste
using the IROZ methodology seems problematic. A sea
for alternatives is of crucial importance for the thermod
namics of confined QA systems.

The BGY approach and density functional theory ha
been shown to be successful for inhomogeneous simple
ids @16#. There exists a close relationship between the B
equation with a coarse-grained prescription, developed
Fischer and Methfessel~referred to below as the FM ap
proximation! @17#, and the density functional method@18#.
The BGY-FM approach was extended for fluid mixtures
well @19#. Both, the single-component and multicompone
versions of the BGY-FM theory agree reasonably well w
simulations. Moreover, in the case of single-component n
uniform fluids, the FM approach leads to a description
wetting transitions, and is simpler to use than sophistica
density functional methods. At present, an extension of d
sity functional methods to the case of QA nonuniform s
PRE 581063-651X/98/58~2!/2652~4!/$15.00
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tems is conceptually difficult. On the other hand, an appli
tion of the BGY-FM theory that relies on the modeling
contact values of the nonuniform pair distribution functio
seems possible. Our main objective in this work is to gen
alize the BGY-FM approach for IQA systems as a possi
alternative for the application of the IROZ equations.

Similar to Refs.@14,15#, we consider an IQA fluid in a
slitlike pore of widthH. The pore walls are chosen normal
the z axis, and the pore is centered atz50. The speciesm
~the matrix component!, adsorbed in the pore, is assumed
be in equilibrium with its bulk counterpart at the chemic
potentialmm . The structure of the matrix is characterized
the density profilerm(z) and by inhomogeneous pair corre
lation functionhmm(1,2). Due to external factors the stru
ture of the matrix becomes quenched, and a confined po
medium ~a matrix-filled slitlike pore! is formed. Now we
consider adsorption of another fluidf in that pore. The ther-
modynamic state of the fluidf in the bulk is determined by
the chemical potentialm f . After equilibration in the pore, in
the presence of matrix species, the fluidf exhibits the density
distributionr f(z). Its pair correlation function is denoted b
hf f(1,2).

For explorative purposes, we assume a simple form
the interactions between particles and pore walls, choos
both species as hard spheres of the same diameters, s51,

Ui j ~r !5 H`,
0,

r ,s
r .s,

Ui~z!5 H`,
0,

z.0.5uH2su
otherwise , ~1!

wherei , j 5m, f are the species indices.
The matrix structure can be obtained by solving the inh

mogeneous Ornstein-Zernike equation supplemented by
LMBW equation for the density profile and the second ord
Percus-Yevick approximation@14# with the exact boundary
conditionym(z→6`)5exp(bDmm), whereDmm is the con-
2652 © 1998 The American Physical Society
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figurational part of the chemical potential for the matrix sp
cies, andym(z)5exp@bUm(z)#rm(z) is the one-particle cavity
distribution function.

The BGY-FM approach for a one-component fluid m
serve as an alternative for evaluating matrix local density
leads to the following equation forrm(z) @17#,

] ln rm~z1!

]z1
1

]bU~z1!

]z1

5E dr2z12rm~z2!gmm
0 @s; r̃m~z1 ,z2!#

1

r 12
d~r 122s!,

~2!

which is nothing else but the BGY equation in which t
contact value of the nonuniform pair distribution functio
gmm

0 (ur12r2u5s)5hmm
0 (ur12r2u5s)11 is approximated

by the contact value for a uniform fluid at average dens
r̃m(r1 ,r2). This density is evaluated as follows:

r̃m~zc!5
1

v E r~r1r c!dr . ~3!

In the above, the averaging is done over a sphere of diam
s and volumev, centered at a pointr c5@r11r2#/2. The
boundary condition for solving the BGY equation is th
same as for the LMBW equation.

The fluid structure in Refs.@14,15# has been obtained
from the IROZ1BGY equations. The solution of the IRO
equations is the most time-consuming part of the numer
procedure. However, if one focuses on the evaluation of
local density of the adsorbed fluid rather than the inhomo
neous pair correlation functions, the application of a mu
component version of the BGY-FM theory@19# may be at-
tempted. Actually, the local density distribution of flu
particles in confined quenched-annealed systems repre
the most important property. One then obtains the adsorp
isotherms by straightforward integration.

To obtain the local fluid density in the IQA of this work
we propose an approximation similar to the BGY-FM equ
tion for a two-component fluid of matrix and fluid particle

] ln r f~z1!

]z1
1

]bU~z1!

]z1

5E dr2z12rm~z2!gm f
0 @s; r̃m~z1 ,z2!,r̃ f~z1 ,z2!#

3
1

r 12
d~r 122s!1E dr2z12rm~z2!

3gmm
0 @s; r̃m~z1 ,z2!,r̃ f~z1 ,z2!#

1

r 12
d~r 122s!. ~4!

Similar to Eq. ~2!, gm f
0 @s; r̃m(z1 ,z2),r̃ f(z1 ,z2)# and

gf f
0 @s; r̃m(z1 ,z2),r̃ f(z1 ,z2)# are the contact values, evalu

ated for theuniform QA system at the densitiesr̃m(z1 ,z2)
andr̃ f(z1 ,z2). In the solution of Eq.~4! we have applied the
exact boundary conditionyf(z→6`)5exp(bDmf), where
yf(z) is the cavity distribution function. In the case of equ
size matrix and fluid particles, the averaged densitiesr̃m and
-
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r̃ f are calculated according to Eq.~3! @17#. However, when
both species are of different sizes, the definitions of avera
densities developed in Ref.@19# might be useful.

From the numerical point of view, the solution of Eq.~6!
is advantageous, if compared with the solution of the IRO
equations. The idea behind this is simply to avoid the so
tion of the IROZ equations, that is, to obtain necessary in
into the BGY equation in the exact formulation of the pro
lem ~i.e., in the IROZ1BGY equation! not from the IROZ
equation but from the solution of the usual ROZ equations
some averaged density. The aim of our calculations wa

FIG. 1. The density profiles@parts ~a! and ~c!# and the cavity
distribution function@part ~b!# of the fluid in matrix-filled slitlike
pore, H54. The symbols denote the results of computer simu
tions @15#, the solid lines are the results of the FM-type theory, a
the dashed lines have been evaluated from the IROZ theory.
chemical potential of matrix isbDmm50.935 @parts ~a! and ~b!#
andbDmm53.1136@part ~c!#. The chemical potential of the fluid is
bDm f53.1136@the lower curves in part~a! and in the left panel of
part~c!#, 4.8147@the upper curves in part~a! and in the left panel of
part~c!#, and 5.8346@part~b!#. The right panel in part~c! shows the
matrix density profile~at bDmm50.93553.1136).
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test the FM-type theory in the simplest case of equal s
matrix and fluid particles confined in a slitlike, hard-wa
pore. We have compared the resulting density profiles w
the results of the IROZ theory@14# and with grand canonica
ensemble Monte Carlo simulations@15#.

The solution of Eqs.~2! and ~4! requires a knowledge o
the contact values of the homogeneous pair distribution fu
tionsgf m

0 (r ) andgf f
0 (r ) in a wide interval of densities. Thes

have been evaluated from bulk ROZ equations with the
approximation. The inaccuracies in calculating contact v
ues@7# may influence the final results, but we would like
test the simplest~and fastest! possible method.

In Fig. 1, we show the results for a narrow pore,H54. In
parts~a! and~b! we choosebDmm50.935, that correspond
to the bulk matrix densityrm

0 50.334 25, if the Carnahan
Starling equation of state is used. In part~c! of this figure,
the chemical potential of the matrix is higher,bDmm

53.1136 (rm
0 50.5). The values forbDm f range from

3.1136 to 5.8346~i.e., the bulk fluid densityr f
0 ranges from

0.5 to 0.65!. From Figs. 1~a! and 1~b!, we conclude that for a
low density matrix both FM and IROZ theories give simil
profiles. Obviously, when the chemical potential of the flu
increases, the deviations of the FM profiles from IROZ p
files and from the simulational data become more p
nounced. The FM theory seems to be more accurate in
region close to the pore walls. However, in the inner part
the pore the FM-type theory smooths the oscillatory char
ter of the profile and leads to a somewhat lower average fl
density at the pore center. WhenbDmm increases, the devia
tions of the FM theory from the second-order theory~which
agrees well with the simulational data@15#! increase,@Fig.
1~c!#. We expect the FM theory to give reasonable results
to bulk fluid densities of order 0.7, provided that the mat
density is not too high. This is not surprising, because
simple nonuniform fluids Sokolowski and Fischer@19# ob-
served that the theory fails at very high fluid densities.

In Fig. 2, we show the evolution of the fluid density pr
files from the BGY-FM approach in a slitlike pore of widt
H54, with the fluid chemical potential atbDmm5
20.5747, (rm

0 50.2). We observe the development of com
mon adsorbed fluid layering in the narrow pore. These p
files permit us to obtain the amount of adsorbed fluid,G

FIG. 2. The density profiles for a fluid adsorbed in a matr
filled pore H54 with bDmm50.5429. The chemical potential o
fluid species isbDm f50.5747, 0.5429, 1.7316, 3.1136, and 4.81
~the solid lines from bottom to top!.
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5A*rf(z)dz/P, where the porosityP is defined as P
5A*dz@12rm(z)#, and A denotes the surface area of
single pore wall. The dependencies ofG on the bulk fluid
pressurep ~computed from the Carnahan-Starling equati
of state! are given in Fig. 3. The amount of adsorbed fluid
higher in a matrix with lower porosity, as well as in narrow
pores. The adsorbed amount increases in both cases
increasing bulk pressure.

To summarize, we have proposed an extension of
BGY-FM approach for simple inhomogeneous fluids to
homogeneous quenched-annealed simple fluids. We h
shown that this very simple theory works sufficiently we
for low and intermediate matrix densities for slitlike pore
Our results for the density profiles agree with compu
simulation data and with much more sophisticated IRO
equations complemented by the BGY or LMBW equatio
The adsorption isotherms calculated in this study have b
shown to behave qualitatively correctly on the confined m
trices’ porosity, and on the bulk pressure. Most importan
we expect that the approach developed would permit on
study the phase behavior of confined quenched-annealed
ids.

This project was supported in parts by DGAPA of th
UNAM, Grant No. IN111597, and by the National Counc
for Science and Technology~CONACyT!, Grant No.
25301E.

FIG. 3. The amount of adsorbed fluid on the bulk pressure
matrices with different microporosity@part ~a!# and for different
pore width @part ~b!#. In part ~a! the matrix chemical potential is
bDmm50.5747, 0.5429 and 1.7316~the curves from top to bot-
tom!, H54. In part ~b! the matrix chemical potential is fixed
bDmm50.5429, andH53, 4, 7, and 11~the curves from top to
bottom!.
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